Southern California Edison 2023-UPS – 2023-UPS

DATA REQUEST SET ES-DR-EUP-24-04

To: Energy Safety Prepared by: Kyle Ferree Job Title: Senior Advisor Received Date: 7/5/2024

Response Date: 7/15/2024

Question 02. a-i:

Please provide information requested as applicable as it pertains to hybrid projects.

- a. In PG&E's May 29th, 2024 comments on draft guidelines, PG&E described a "hybrid" approach or "hybrid distribution hardening" as "a circuit segment that is hardened using a combination of covered conductor, undergrounding, and/or line removal with remote grid" Please confirm whether or not SCE has similar recommended definitions or provide a corresponding SCE-specific definition with any changes.
- b. Does SCE have a similar approach where a circuit segment is hardened using a combination of covered conductor, undergrounding, and/or line removal with remote grid?
- c. In SCE's aggregation of potential hybrid distribution hardening, is there a definitive list of alternative mitigations that could potentially be included in a designated percentage of non-undergrounding work?
- d. Can SCE elaborate on how and why a circuit segment would become a hybrid distribution hardening project? Please explain the process of scoping a such a project and provide an example that illustrates how and why other mitigations were chosen over undergrounding.
- d1 Is the reason for using an alternative mitigation always due to a better cost/risk performance, a physical limitation (such as a river crossing or granite), a combination of both, or some other factor? Please explain.
- d2 Is there a distinction between how an alternative mitigation will be reported on the EUP if the alternative mitigation is included because of cost/risk performance versus a physical limitation?
- e. Provide a .xlsx document that details undergrounding and "hybrid" projects from a recent workplan(s) covering at least 3 years of planned work. Provide the name of the planning document(s) and the years it covers. For each isolatable circuit segment included in the workplan(s) report information in the table below.
- f. Provide a general cost comparison, per mile replaced, of each individual mitigation option (e.g. underground, covered conductor, other).
- g. For the anticipated projects, how many isolatable circuit segments are typical on a given circuit?
- h. Are there instances of planned projects in which only a portion of the circuit segment is undergrounded without required overhead hardening work or wildfire mitigation improvements on the remainder of the overhead section(s) of the circuit segment?
- i. Provide specific details and examples on how seeking rate recovery through an alternate regulatory process, such as the GRC, for non-undergrounded portions would affect an undergrounding project. Is there a potential for construction delays, and if so, how long would these delays last? Are there scenarios where SCE would have to return to a circuit segment to construct overhead hardening portions separately?

Field Name	Description	Unit/Datatype
Total Circuit	Length of isolatable circuit segment	Miles
Segment Miles	before mitigation	
Total Constructed	Number of miles of new	Miles
Miles	infrastructure to be energized	
Total Miles	Number of miles of underground	Miles
Undergrounded	infrastructure to be energized	
Overhead	Number of miles of overhead line	Miles
Removed	deenergized upon completion	
Covered Conductor	Number of miles of covered	Miles
Installed	conductor to be installed	
Other Mitigations	Provide brief description of other	Text
	mitigation efforts or devices	
	installed that are associated with	
	this project	
Justification for	Provide brief description for each	Text
Alternative	hybrid project including the reason	
Mitigation	undergrounding is not used on	
	entire circuit segment and	
	alternative mitigations are chosen	
	(e.g. better cost/risk performance,	
	physical limitations, or any other	
	reasons).	
Other Mitigations	Add a field for each alternative	Miles
Miles	mitigation to be used and indicate	
	the number of miles of overhead	
	line it will be applied to or replace	
Total Un-Mitigated	Number of miles of original, un-	Miles
Circuit-Miles on	mitigated, circuit segment line after	
Circuit Segment	completion of project	
Subprojects	Number of total	Integer
	subprojects created within this	
	Project.	
Underground	Number of undergrounding	Integer
Subprojects	subprojects	
Covered Conductor	Number of covered conductor	Integer
Subprojects	subprojects	

ES-SCE-EUP-001: 02. a-i

Page 3 of 3

Other Mitigation	Add a field for each alternative	Integer
Subprojects	mitigation to be used and indicate	
	the number of subprojects	
	associated with it	
Secondary Lines	Will secondary distribution lines be	Boolean
	undergrounded as part of this	
	project?	
Service Lines	Will service lines be undergrounded	Boolean
	as part of this project?	
Fast Trip Settings	Will Fast Trip settings be added to	Boolean
rast rip settings	this circuit segment?	

Response to Question 02. a-i:

- a. Because SCE is not planning to participate in the EUP process, we do not have a recommendation for the definition of hybrid projects.
- b. Notwithstanding SCE's plans to not participate in this process, SCE's hardening strategy treats a single circuit segment (poles) with targeted undergrounding (TUG) or covered conductor (WCCP), not both. If TUG and WCCP projects are in close proximity or even on the same overall circuit, they would be scoped, designed and constructed as separate projects.
- c. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- d. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- e. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- f. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- g. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- h. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.
- i. See answer to Q02.b. SCE does not have "hybrid" projects as described in question 2a.